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ABSTRACT 

This paper presents the wave induced responses of shallow 

draft interconnected pontoons as investigated by the EU-funded 

project BAMBOO. The project aims to tackle the barriers for the 

implementation of a sustainable, large-scale offshore solar farm 

of 1km2/150 MW, that will act as a blueprint for the rollout of 

offshore solar projects in Europe.  

Special focus is attributed to the influence of wave frequent 

horizontal motions and axial interconnector loads on such 

installations. It is shown that the horizontal motions and axial 

connector loads are mainly related to the array length to 

wavelength aspect ratio. For stiff connectors, the axial connector 

loads RAOs vary between zero and a value that is twice the 

cross-sectional weight. The axial loading pattern for lower axial 

stiffness values is similar to the stiff solution, whereas dynamic 

amplification occurs in way of axial vibration modes. An 

analytical solution is derived for the axial natural frequencies and 

loading patterns. It is shown that in head waves the horizontal 

motions are in good agreement with results from diffraction 

theory and model tests. It is also concluded that expanding an 

array by adding more pontoons will significantly reduce the 

wave frequent horizontal motions, which leads to lower 

variations in mooring line tensions.  

Keywords: FPV, Offshore Solar 

 

NOMENCLATURE 
Symbol Quantity 

B  Width of pontoon 

c  Axial connector stiffness 

daf  Dynamic Amplification Factor 

e  Euler’s number (~2.71828) 

F  Force 

FFK  Froude-Krylov Force 

g  Gravity constant 

i  Imaginary number (-1)0.5 

k  Wave number 2π/λ 

La  Length of array 

Lpp  Length of pontoon 

m  Pontoon mass 

N  Number of pontoons in length direction 

p  Pressure 

S  Power spectral density 

Qa  Modal force amplitude 

qa  Modal response amplitude 

t  Time 

T  Draft or Tension 

Un  Axial displacement mode shape n 

u  Axial displacement 

v  Eigen vector, mass normalized 

x  Horizontal coordinate 

z  Vertical coordinate 

ζa  Wave amplitude 

ζn  Modal damping ratio 

λ  Wave length or eigenvalue 

ρ  Water density 

Φ  Phase angle 

ω  Angular frequency 

 

1. INTRODUCTION 
In the years to come worldwide demand for energy is set to 

continuously rise [1]. Currently EU explores the potential of 

more sustainable options to meet emerging energy demands and 

review their energy sector strategies that aim to account for 

renewable energy production into the energy mix [2]. A 

noteworthy area is the development of hybrid offshore wind / 

solar parks. Offshore solar extends the potential of photovoltaics 

at enormous scales and can enable Europe to meet their climate 

neutral policies for 2030 and 2050 [3]. This is because it makes 



 

 2 © 2025 by ASME 

use of abundant space at sea, satisfies economies of scale and is 

a complementary energy yield. The latter could be supported by 

the development and certification of hybrid floating wind / 

floating solar farm installations that can enable the utilization of 

existing offshore cable infrastructures and provide stable energy 

output with low impact on marine ecosystems.  

Since December 2023 Oceans of Energy leads the European 

Climate, Infrastructure and Environment Executive Agency 

(CINEA) sponsored BAMBOO (Build scAled Modular 

Bamboo-inspired Offshore sOlar systems) consortium with the 

aim to tackle the barriers for a sustainable, large-scale offshore 

Floating PhotoVoltaics (FPV) system of 1 km2/150 MW. The 

scope of the project is to enable 1km2/150 MW hybrid 

wind/offshore solar installations. One of the technical pieces of 

the puzzle is the hydrodynamic assessment of large-scale 

interconnected floating solar arrays. This paper focuses on how 

the floating offshore installation response changes while 

expanding the array to 1km2/150 MW. Wave frequent horizontal 

motions and axial connector loads are assessed and compared. 

The results may be considered important for the development of 

future classification rules, design assessment procedures and the 

certification of hybrid wind solar farm installations. 

 

 
FIGURE 1: LARGE SCALE OFFSHORE FPV OF 1 KM2/150 MW 

IN AN OFFSHORE WIND FARM 

 

2. ANALYTICAL SOLUTION 
An analytical solution has been derived for the wave 

frequent horizontal motions and axial connector loads. The main 

advantage of this analytical solution is that it could assist with 

our general understanding of the physical dynamic behavior of 

the floating installation under development. The disadvantage is 

that the solution is not that accurate due to several simplifications 

and assumptions. In the model presented the most important 

assumption is that the diffraction effect is small, i.e. the wave 

field leeward of the array is not significantly affected by the 

presence of the array system itself (see Section 3). The wave 

steepness is assumed to be small and therefore the dynamic 

behavior of the system is assumed linear. Under these 

assumptions, the wave excitation on a pontoon effectively 

becomes equivalent to the Froude-Krylov force which describes 

the integration of the undisturbed wave pressure over the wetted 

hull of the FPV.  

 

2.1 Wave excitation on an array 
The undisturbed wave pressure is described by the Airy 

wave solution. For deep water, this pressure can be simplified to 

[4]: 

 

𝑝 = 𝜌𝑔𝜁𝑎𝑒
𝑘𝑧 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡)                                                     (1) 

 

The term ekz implies that the wave pressure varies over the water 

column. The pontoons have a shallow draft. Thus, the wave 

pressure remains constant over the draft of the pontoon and 

approximately the same as the pressure in way of the free surface 

(ekz = 1). In surge direction, FFK on a pontoon is the difference 

between its bow and stern values. For a small pontoon Lpp, the 

pressure difference between bow and stern can be approximated 

by the formulae: 

 

𝑝𝑏𝑜𝑤 − 𝑝𝑠𝑡𝑒𝑟𝑛 = 𝐿𝑝𝑝
𝑑𝑝

𝑑𝑥
]
𝑐𝑜𝑔

= 𝜌𝑔𝜁𝑎  𝑘𝐿𝑝𝑝  cos(𝑘𝑥𝑐𝑜𝑔 − 𝜔𝑡) 

(2) 

 

The FFK on a single pontoon then becomes the pressure 

difference times the frontal area BT. The relation between array 

and wave length can be established using the expression : 

 

𝑘𝐿𝑝𝑝 =
2𝜋

𝜆

𝐿𝑎

𝑁
= 2𝜋

𝐿𝑎

𝜆

1

𝑁
 ,  𝑥1 = 0,         𝑥𝑁 = 𝐿𝑎 

 

The net Froude Krylov force FFK,array is given by the summation 

over all the pontoons : 

𝐹𝐹𝐾,𝑎𝑟𝑟𝑎𝑦 = 𝜌𝑔𝜁𝑎  𝐵𝑇 2𝜋 
𝐿𝑎
𝜆
{cos(𝜔𝑡)

1

𝑁
∑cos (2𝜋𝑛

𝐿𝑎
𝜆
)

𝑁

𝑛=1

+ sin(𝜔𝑡)
1

𝑁
∑sin (2𝜋𝑛

𝐿𝑎
𝜆
)

𝑁

𝑛=1

} 

(3) 

A demonstration of the above for λ = La, is depicted in Figure 2. 

The arrows indicate the horizontal component of FFK. The rising 

pontoons experience a force in the direction of the wave 

propagation, while the descending pontoons are pulled in the 

opposite direction. For this example the net force on the array is 

zero. 

 

 
FIGURE 2: HORIZONTAL COMPONENT FFK at LA/λ = 1.0 
 

When the amount of pontoons N is sufficiently large, we can 

replace the summation by the integral: 
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𝐹𝐹𝐾,𝑎𝑟𝑟𝑎𝑦 = 𝜌𝑔𝜁𝑎  𝐵𝑇 2𝜋 
𝐿𝑎
𝜆
{cos(𝜔𝑡)

1

𝐿𝑎
𝜆⁄
∫ cos 2𝜋𝑥̂

𝐿𝑎
𝜆⁄

0

𝑑𝑥̂

+  sin(𝜔𝑡)
1

𝐿𝑎
𝜆⁄
∫ sin 2𝜋𝑥̂

𝐿𝑎
𝜆
⁄

0

𝑑𝑥̂} 

(4) 

 

Solving the integrals and simplifying the result using 

goniometric functions gives: 

 

𝐹𝐹𝐾,𝑎𝑟𝑟𝑎𝑦 = 𝜌𝑔𝜁𝑎  𝐵𝑇   √2 − 2cos (2𝜋
𝐿𝑎
𝜆
)    sin(𝜔𝑡 + 𝜙𝐹𝐾) 

(5) 

 

Under these assumptions, it turns out that the amplitude of the 

net wave excitation is a function of La/λ only,which expresses the 

ratio between an array length and a wavelength (see Figure 3).  

 

 
FIGURE 3:WAVE EXCITATION AMPLITUDE ON AN ARRAY 

When the wavelength exactly fits within the array length, either 

a single time or an exact multitude, the force on the individual 

pontoons cancels out and the net force becomes zero (see Figure 

2). In-between those cancellations, the net force RAO reaches a 

maximum value of twice the sectional weight (Fx = 2 ρgBT ζa). 

 

2.2 Interpretation of wave excitation 
Equation 5 indicates the Froude-Krylov force is only a 

function of the La/ λ ratio. Neither the number of pontoons N nor 

the absolute array length La are included in this relationship. As 

this might be counterintuitive, Figure 4 illustrates three arrays 

with La/λ = 1.5. Figure 4 shows an array of 12 and 24 pontoons. 

The second array has twice the amount of pontoons, but the force 

on each pontoon is only half. Consequently, the net force 

amplitude on both arrays equals 2 ρgBT ζa. As the wave pressure 

field (and gradient) underneath both arrays is the same, the force 

on each pontoon is proportional to Lpp. When N is large, the net 

force on the array becomes insensitive to the number of 

pontoons.  

The absolute length of an array does not affect the force 

amplitude. For example, a 20m long array has the same force 

amplitude of 2 ρgBT ζa as a 200m long array. Figures 4 (a) and 

(c) respectively illustrate long and short arrays, both with N = 12 

and both in a wave with ratio La/λ = 1.5. In (c), the pontoon length 

is only half but as the wave pressure gradient is double, the force 

is the same. Shorter waves comprise of water particles with 

higher accelerations, and hence a higher pressure gradient. The 

effect of a pontoon length and pressure gradient are cancelling 

out the effect of absolute length. Thus, La/λ appears to be more 

important for the force amplitude. The absolute array length is 

less relevant. 

 
FIGURE 4: La/λ = 1.5, a) N = 12, b) N = 24, c) N = 12  

 

Although the force amplitude of both arrays displayed in 

Figures 4 (a) and (c) is 2 ρgBT ζa, array (a) is still likely to 

experience a larger absolute force. This is because depending on 

the site specific metocean data, the wave amplitude ζa of the 

longer wave can be significantly larger than the amplitude of the 

shorter wave. 

 

2.3 Array horizontal motion response 
We assume the mooring does not significantly influence the 

wave frequent motions of the array i.e., the mooring stiffness is 

low. Since the wave field leeward of the array is not significantly 

disturbed by the presence of the array, the wave radiation is also 

small and therefore the added mass and damping can be ignored. 

In Section 3 we will reflect on these assumptions and their 

consequences. The equation of motion in the horizontal plane 

simplifies to: 

 

𝐹𝐹𝐾,𝑎𝑟𝑟𝑎𝑦 = 𝑚𝑥̈ = 𝜌 𝐿𝑎𝐵𝑇 𝑥̈                                                   (6) 

 

Double integration of  Equations (5) and (6) over time twice 

gives: 

 

𝑥 =
1

𝜔2

𝑔

𝐿𝑎
 √2 − 2cos (2𝜋

𝐿𝑎

𝜆
)  𝜁𝑎  sin(𝜔𝑡 + 𝜙𝑥)                           (7) 

 

For deep water dispersion [4]: 

 

𝜔2 = 2𝜋
𝑔

𝜆
                                                                                                   (8) 

 

Thus,  
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𝑥 =
1

2𝜋

𝜆

𝐿𝑎
  √2 − 2cos (2𝜋

𝐿𝑎
𝜆
) 𝜁𝑎  sin(𝜔𝑡 + 𝜙𝑥)   

(9) 

The RAO then becomes (see Figure 5): 

 

𝑅𝐴𝑂 𝑥 =
1

2𝜋

𝜆

𝐿𝑎
  √2 − 2cos (2𝜋

𝐿𝑎
𝜆
)  

(10) 

 
FIGURE 5: RAO HORIZONTAL MOTION 

 

The pattern of the wave excitation is clearly visible, going 

to zero at the integer values and reaching a local maximum 

around 1.5, 2.5, 3.5, etc.  In this figure, moving to the right means 

elongating the array, and adding more inertia to the system leads 

to a decreased response. For small arrays, in the limit of La 

towards zero, the inertia and the wave excitation both go to zero. 

They decrease at a rate such that the response reaches the 

asymptote of 1, meaning the array effectively behaves as a water 

particle.  

The spectral density of the motion response in an irregular 

sea state is [5]: 

 

𝑆𝑥 = 𝑆𝜁 ∙ 𝑅𝐴𝑂
2                                                                             (11) 

 

The significant value of the motion response becomes [5]: 

 

𝑋𝑠𝑖𝑔𝑛 = 4√∫ 𝑆𝑥𝑑𝜔
∞

0
                                                             (12) 

 

Figure 6 shows the significant response as function of the 

array length for different peak period Tp values. On the top axis 

electrical power is presented as a reference, assuming a square 

array with 150 Watt/m2. Increasing the array size decreases the 

wave frequent horizontal motions significantly. Expanding a 

small array towards 150 MW will significantly reduce the 

horizontal motions, and therefore also the mooring line tension 

variations associated to those.  

The benefit of this derivation is that there is no CPU cost to 

construct this figure, and that there is no information required on 

the pontoon length, draft, width or connectors.  

 

 
FIGURE 6: SIGNIFICANT MOTION RESPONSE FOR Hs = 1m, 

JONSWAP WAVE SPECTRUM WITH γ = 3.3 

 

2.3 Axial flexible response with discrete masses 
The axial loads and flexible responses are calculated with a 

linear combination of orthonormal modes. For a six-body 

system, this is shown in Figure 7. 

 

 
FIGURE 7: SIX BODY MASS SPRING SYSTEM 

 

Assuming that each pontoon has a mass m and each connector 

has an axial stiffness c, the equation of motion for this system is: 

 

[
 
 
 
 
 
 

[
 
 
 
 
 
𝑐 −𝑐
−𝑐 2𝑐 −𝑐

−𝑐 2𝑐 −𝑐
−𝑐 2𝑐 −𝑐

−𝑐 2𝑐 −𝑐
−𝑐 𝑐 ]

 
 
 
 
 

− 𝜔2

[
 
 
 
 
 
𝑚

𝑚
𝑚

𝑚
𝑚

𝑚]
 
 
 
 
 

]
 
 
 
 
 
 

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]
 
 
 
 
 

=

[
 
 
 
 
 
𝐹1
𝐹2
𝐹3
𝐹4
𝐹5
𝐹6]
 
 
 
 
 

 

         (13) 

 

Where m includes the structural and added mass. The natural 

frequencies and associated mode shapes can be found by setting 

the external forcing to zero and divide the lefthand side by m: 

 

{
 
 

 
 

  

[
 
 
 
 
 
𝑐 −𝑐
−𝑐 2𝑐 −𝑐

−𝑐 2𝑐 −𝑐
−𝑐 2𝑐 −𝑐

−𝑐 2𝑐 −𝑐
−𝑐 𝑐 ]

 
 
 
 
 

  𝑚⁄ − 𝜆 𝐼  

}
 
 

 
 

[
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6]
 
 
 
 
 

= 0 

         (14) 

 

where I represents the identity matrix and λ an eigenvalue (not 

wave length), such that ωn
2 = λ. The eigenvalues and 

eigenvectors can solved only numerically. The eigenvectors v are 

mass normalized such that: 

 
m m m m m m m m m m m m 
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𝑣𝑇𝑚 𝑣 = 1                                                                                   (15) 

 

As an example, Figure 8 shows the 6 mass orthonormal mode 

shapes: 

 
FIGURE 8: AXIAL MODE SHAPES FOR A 6 BODY SYSTEM 

 

To calculate the excitation of each mode shape, we first rewrite 

the excitation amplitude FFK,a on a single pontoon as: 

 

𝐹𝐹𝐾,𝑎(𝜔) = 𝜌𝑔𝜁𝑎  𝐵𝑇  𝑘𝐿𝑝𝑝(cos(𝑘𝑥𝑐𝑜𝑔) + 𝑖 sin(𝑘𝑥𝑐𝑜𝑔))   

(16) 

 

The real and imaginary parts of the amplitude are respectively 

in- and out of-phase with respect to the incoming waves. The 

excitation amplitude Qa corresponding to each normal mode 

shape v is: 

 

𝑄𝑎(𝜔) = 𝜌𝑔 𝜁𝑎  𝐵𝑇  𝑘𝐿𝑝𝑝 {∑v𝑛 cos(𝑘𝑥𝑛)

𝑁

𝑛=1

+ 𝑖∑v𝑛  sin(𝑘𝑥𝑛)

𝑁

𝑛=1

} 

(17) 

 

The modal force amplitude is a function of the wave number k. 

Figure 9 shows this wave excitation for the first 6 modes. Mode 

1 corresponds to the surge excitation (see Figure 3). A similar 

cancellation pattern is evident in the higher mode shapes, with 

the odd and even numbered mode shapes shifted by 0.5 L / λ.  

 

 
FIGURE 9: MODAL FORCE AMPLITUDE DISCRETE MASSES 

 

The motion response amplitude for each normal mode shape 

becomes: 

 

𝑞𝑎 = 
|𝑄𝑎|

𝜔𝑛
2

1

√(1−(
𝜔

𝜔𝑛
)
2
)
2

+(2𝜁𝑛
𝜔

𝜔𝑛
)
2

    (18) 

 

As the mode shapes are orthogonal, the total motion of the 

pontoons can be obtained as a sum of the response for all mode 

shapes. It is important to take the phasing of each modal response 

into account. For each modal response, the phase angle between 

wave and motion is the summation of the angle between wave 

and modal forces and the angle between the modal force and the 

response: 

 

𝜙𝑤𝑎𝑣𝑒− 𝑚𝑜𝑡𝑖𝑜𝑛 = atan2(ℜ 𝑄, ℑ 𝑄)+ atan2(2𝜁𝑛
𝜔

𝜔𝑛
, 1 − (

𝜔

𝜔𝑛
)
2

) 

(19 

Figure 10 shows the horizontal motion RAO and axial connector 

loads for an array comprising of 100 pontoons where the axial 

connector stiffness is high. When the number of pontoons is 

sufficiently large, this figure becomes insensitive to the number 

of pontoons. Straight vertical contour lines in the motion RAO 

indicate that all pontoons move together, i.e. the relative motions 

are small as the connectors are stiff. The surge induced RAO is 

effectively the same as the one depicted in Figure 5. The 

connector loads are varying between zero and 2ρgBT ζa while B 

should be interpreted as the average span between two 

connectors. For small arrays, La / λ << 1, the axial connector 

load tends to zero. Expanding the array increases the axial load 

till L / λ = 1, with the highest axial load in the array centre. 

Expanding the array does not lead to a higher axial connector 

load. The number of local maxima is equal to the La / λ value. 

 

 
FIGURE 10: MOTION RAO (LEFT) AND AXIAL LOAD RAO 

(RIGHT), STIFF CONNECTORS 
 

In Figure 11 the axial stiffness of the connectors is reduced, and 

chosen such that the natural frequency of the first mode 

corresponds to the wave frequency at L / λ = 3. The contour lines 

of the motion RAO are curved, indicating that there is relative 

motion between the pontoons. The leeward and waveward 

pontoons show more wave frequent movement than the central 
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pontoons. The axial loading pattern is similar to the stiff solution 

yet it appears skewed and with some dynamic amplification.  

The solution is particularly sensitive to 0.1 modal damping 

ratio. Damping comprises of two sources namely hydrodynamics 

and the mechanical damping of the connectors. Figures 12 and 

13 show the solution for a damping ratio of 0.3 and 0.5 

respectively.  

 

 
FIGURE 11: MOTION RAO AND AXIAL LOAD RAO, SOFT 

CONNECTORS, DAMPING RATIO 0.1 

 
FIGURE 12: MOTION RAO AND AXIAL LOAD RAO, SOFT 

CONNECTORS, DAMPING RATIO 0.3 

 
FIGURE 13: MOTION RAO AND AXIAL LOAD RAO, SOFT 

CONNECTORS, DAMPING RATIO 0.5 
 

It is difficult to reduce connector loads by reducing axial 

stiffness. If the damping is high, the axial connector load can be 

reduced leading to reduced stiffness in way of the relative 

pontoon motions. Practically, collisions between pontoons 

should be avoided, and hence the relative motions should always 

be smaller than the gap size. As typically wave heights are an 

order of magnitude larger than the gap size, it is questionable 

whether the allowable relative motions are sufficient. The 

connector load can be reduced by adding damping. In this 

example the modal damping ratio has been chosen the same for 

each mode number.  

 

2.3 Axial flexible response with continuous mass 

The discrete mass approach presented in Section 2.2 can be 

used to investigate the influence of the number of pontoons. 

Above ~50 pontoons, the results displayed in Figures 13 to 16 

converge. The larger the number of pontoons the more uniform 

the dynamic behavior of the array becomes, i.e. it behaves as a 

continuous rod with distributed mass and distributed axial 

stiffness (see Figure 14). 

 

 
 

 
FIGURE 14: ARRAY REPRESENTED BY A CONTINUOUS ROD 

WITH AXIAL FLEXIBILITY 

 

For such system the axial displacement u of a discrete element 

Δx is expressed by the following equation of motion [6] :  

 

𝐹(𝑥, 𝑡)

∆𝑥
= 𝐸𝐴

𝜕2𝑢

𝜕𝑥2
(𝑥, 𝑡) − 𝜌𝐴

𝜕2𝑢

𝜕𝑡2
(𝑥, 𝑡) 

(20) 

 

The general solution to the above differential equation is u(x,t) = 

U(x)T(t). If we assume orthogonal mode shapes: 

 

𝑢(𝑥, 𝑡) = ∑𝑈𝑛(𝑥)𝑇𝑛(𝑡)

∞

𝑛=1

 

(21) 

 

where Un is mode shape number n. If we assume the waveward 

and leeward ends are free the mode shapes are expressed as: 

 

𝑈𝑛 = 𝐶𝑛 cos
𝑛𝜋𝑥

𝐿
                                                                                 (22) 

 

Where Cn can be used to mass normalize the mode shapes: 

 

𝜌𝐵𝑇 ∫ (𝐶𝑛 cos
𝑛𝜋𝑥

𝐿
)
2

𝑑𝑥
𝐿

0
= 1                                                           (23) 

 

Therefore: 

𝐶𝑛 = √
1

ρ BT∫  cos2
𝑛𝜋𝑥

𝐿
𝑑𝑥

𝐿
0

= √
2

ρ LBT
                                              (24) 

 

and the natural frequencies are expressed as: 

 
m m m m m m m m m m m m 

x 
Δx

x 
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𝜔𝑛
2 = (

𝑛𝜋

𝐿
)
2 𝐸𝐴

𝜌𝐴
                                                                        (25) 

 

The amplitude of FFK for an increment Δx is: 

 

𝐹𝐹𝐾(𝜔) = 𝜌𝑔𝜁𝑎  𝐵𝑇  𝑘 𝛥𝑥 (cos 𝑘𝑥 + 𝑖 sin 𝑘𝑥)                        (26) 

 

Hence, the modal force amplitude becomes: 

 

𝑄𝑎(𝜔) = ∫ 𝑈𝑛𝐹𝐹𝐾𝑑𝑥
𝐿

0

=𝜌𝑔𝜁𝑎  𝐵𝑇  𝑘  𝐶𝑛 {∫ cos
𝑛𝜋𝑥

𝐿

𝐿

0

cos 𝑘𝑥 𝑑𝑥

+ 𝑖 ∫ cos
𝑛𝜋𝑥

𝐿

𝐿

0

sin 𝑘𝑥 𝑑𝑥} 

(27) 

 

Solving the integrals gives: 

 

𝑄𝑎(𝜔)

=  𝜌𝑔𝜁𝑎  𝐵𝑇  𝑘 𝐶𝑛 𝐿 {
𝑘𝐿 cos 𝑛𝜋 sin 𝑘𝐿  − 𝑛𝜋 sin 𝑛𝜋 cos 𝑘𝐿

𝑘2𝐿2 − 𝜋2𝑛2
 

+ 𝑖 
𝑘𝐿 cos 𝑛𝜋 cos 𝑘𝐿 + 𝑛𝜋 sin 𝑛𝜋 sin 𝑘𝐿 − 𝑘𝐿

𝜋2𝑛2 − 𝑘2𝐿2
} 

(28) 

 

As the mode shape number n is an integer, all terms with sin(nπ) 

are always zero and all terms with cos(nπ) are either 1 or -1, 

depending on whether n is even or odd. This greatly simplifies 

the equation to the format: 

 

𝑄𝑎(𝜔) =  𝜌𝑔𝜁𝑎  𝐵𝑇  𝐶𝑛 {
(𝑘𝐿)2 

(𝑘𝐿)2 − (𝑛𝜋)2
} 

 

                {(−1)𝑛(sin 𝑘𝐿 + 𝑖 cos 𝑘𝐿) − 𝑖}                                     (29) 

 

A solution is depicted in Figure 15.  

 
FIGURE 15: MODAL FORCE CONTINUOUS ROD 

 

Note the similarities to Figure 9, i.e. the analytical solution for 

the continuous rod gives similar results as the numerical solution 

with discrete masses. 

The motion response amplitude of each mode shape is 

defined as: 

 

𝑞𝑎 = 
|𝑄𝑎|

𝜔𝑛
2

1

√(1−(
𝜔

𝜔𝑛
)
2
)
2

+(2𝜁𝑛
𝜔

𝜔𝑛
)
2

                                                      (30) 

 

In the above equation the first ratio represents the quasi-steady 

response and the second the so called Dynamic Amplification 

Factor (DAF). For a uniform rod, the standard solution for the 

natural frequencies is: 

 

𝜔𝑛
2 = (

𝑛𝜋

𝐿
)
2 𝐸𝐴

𝜌𝐴
                                                                          (31) 

 

We can translate this to the interconnected pontoons by 

considering that the axial stiffness of the full-length rod is: 

 

𝑐𝑟𝑜𝑑 =
𝐸𝐴

𝐿
                                                                                                (32) 

 

In practice, the axial stiffness of the full-length array is the 

combination of all connectors in series. As there are N-1 

connectors for N pontoons, the equivalent axial stiffness of the 

array becomes: 

 

𝑐𝑎𝑟𝑟𝑎𝑦 =
𝑐

𝑁−1
=

𝐸𝐴

𝐿
                                                                                (33) 

 

where c is the axial stiffness of 1 connector. The equivalence of 

EA of the rod then becomes: 

 

𝐸𝐴 =
𝑐 𝐿

𝑁−1
                                                                                                         (34) 

 

For the sectional inertia ρA we this simplifies to ρBT. The 

omission of the added mass term is discussed in Section 3. The 

natural frequencies of the array therefore become: 

 

𝜔𝑛
2 =

𝑛2𝜋2 𝑐 

𝜌 𝐿𝐵𝑇 (𝑁−1)
                                                                                (35) 

 

With this natural frequency, the quasi-steady response of 

equation (37) becomes: 

 
|𝑄𝑎|

𝜔𝑛
2
=
(𝜌 𝐵𝑇)2 (𝑁 − 1)

𝑛2𝜋2 𝑐
 𝑔𝐿 𝜁𝑎  𝐶𝑛  {

(𝑘𝐿)2 

(𝑘𝐿)2 − (𝑛𝜋)2
} 

               
             {(−1)𝑛(sin 𝑘𝐿 + 𝑖 cos 𝑘𝐿) − 𝑖} 

          (36) 

 

Therefore, the axial displacement is expressed as: 
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𝑢 =∑𝑈𝑛𝑞𝑎

∞

𝑛=1

=∑  
 (𝑁 − 1)

𝑛2𝜋2 𝑐
 (𝜌 𝐵𝑇)2𝑔 𝐿 𝜁𝑎 𝐶𝑛

2 cos
𝑛𝜋𝑥

𝐿
 

∞

𝑛=1

∙ {
(𝑘𝐿)2 

(𝑘𝐿)2 − (𝑛𝜋)2
} {(−1)𝑛(sin 𝑘𝐿 + 𝑖 cos 𝑘𝐿) − 𝑖} ∙ 𝑑𝑎𝑓 

          (37) 

 

Using the established relation for Cn and following mass-

normalization, this simplifies to: 

 

𝑢 = 2 𝜌𝑔 𝐵𝑇 
 (𝑁 − 1) 

𝑐
𝜁𝑎∑

1

𝑛2𝜋2
  cos

𝑛𝜋𝑥

𝐿
 

∞

𝑛=1

∙ {
(𝑘𝐿)2 

(𝑘𝐿)2 − (𝑛𝜋)2
} {(−1)𝑛(sin 𝑘𝐿 + 𝑖 cos 𝑘𝐿) − 𝑖} ∙ 𝑑𝑎𝑓 

          (38) 

 

The force in way the connectors corresponds to the dynamic 

behavior of a rod in tension, i.e. Equation 24 applies leading to 

the expression: 

 

𝑇 = − 2 𝜌𝑔 𝐵𝑇 𝜁𝑎∑ 
1

𝑛𝜋
sin

𝑛𝜋𝑥

𝐿
 

∞

𝑛=1

∙ {
(𝑘𝐿)2 

(𝑘𝐿)2 − (𝑛𝜋)2
} {(−1)𝑛(sin 𝑘𝐿 + 𝑖 cos 𝑘𝐿) − 𝑖} ∙ 𝑑𝑎𝑓 

          (39) 

 

Definition of the DAF requires knowledge of the ratio 

between wave and natural frequencies. By assuming deep water 

dispersion, we obtain: 

 

(
𝜔

𝜔𝑛
)
2

=
𝐿

𝜆
 
2𝜌𝑔𝐵𝑇 (𝑁−1) 

 𝜋 𝑛2 𝑐
                                                                (40) 

 

For stiff connectors, DAF = 1 (see Figure 16). This is similar to 

Figure 10, i.e. when N is large, the analytical continuous rod 

idealization appears to be consistent with the numerically solved 

discrete mass approach.  

 
FIGURE 16: MOTION RAO (LEFT) AND AXIAL LOAD RAO 

(RIGHT), STIFF CONNECTORS 
 

In Figure 17 the axial stiffness is chosen such that the natural 

frequency of the first elastic mode corresponds with the wave 

frequency at L / λ = 3. Hence, the stiffness is chosen so that: 

 

𝑐 = 3 ∙
2𝜌𝑔𝐵𝑇(𝑁−1)

𝜋
                                                                      (41) 

 

Comparison of  Figures 17 and 11 suggests that also for a 

non-stiff system the analytical solution is similar to the 

numerical solution. From this analytical solution we prove that 

the axial load in the connectors goes to exactly 2ρgBT ζa when 

the axial stiffness is high (DAF=1). For lower stiffness values, 

the dynamic amplification factor and hence the modal damping 

determines whether there is an increase or decrease in axial load. 

 

 
FIGURE 17: MOTION RAO AND AXIAL LOAD RAO, SOFT 

CONNECTORS, DAMPING RATIO 0.1 

 

3. CASE STUDY WITH A LINEAR POTENTIAL FLOW 
METHOD 
To study the influence of array size on the wave induced 

dynamics, diffraction hydrodynamics have been studied using 

software DIFFRAC [8]. This solver assumes an empirical 

correction for non-viscous flow and small wave amplitudes. It 

considers diffraction and radiation by means of a frequency 

domain Green function method [7].  

 

3.1 Case description 
Arrays have been designed for the sole purpose of studying 

the effect of the array length L, the amount of pontoons N and 

the pontoon length Lpp. The main characteristics are listed in 

Table 1. The dimensions of these arrays are chosen such that they 

can be tested in MARIN’s Concept Basin at relevant L / λ ratios. 

Two pontoons were designed and herby designated as ‘small’ and 

‘large’. Note that 2 small pontoons, including 1 gap, have the 

same length as 1 large pontoon. Hence, an array of 6 large 

pontoons (including 5 gaps) has the same length as 12 small 

pontoons (including 11 gaps) while both arrays are 3.5m long. In 

this case study all arrays are 1 pontoon wide (1.00m)  

 

Table 1: Case description pontoons 

 Lpp B T gap Mass 

Pontoon [m] [m] [m] [m] [kg] 

Large 0.5667 1.00 0.0239 0.02 13.85 

Small 0.2733 1.00 0.0239 0.02 6.68 
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3.2 Wave frequent horizontal motions 

To verify the surge motion RAO, the connectors between 

pontoons were at first considered to behave as hinges with linear 

spring behavior. A hinge can be modelled by choosing a high 

stiffness values in axial and shear directions while setting the 

rotational stiffness to zero. To practically determine what ‘a high 

stiffness value’ is, the stiffness should be increased in steps. 

While increasing the stiffness, the relative motions reduce. 

Herewith the stiffness was increased till the relative motion 

RAOs < 0.01. Practical experience suggest that a further increase 

of the stiffness may eventually lead to numerical inaccuracies 

and therefore this is not recommended. 

The shortest array had N = 6 pontoons expanded to 12, 24 

and 48. The surge RAOs are plotted in Figures 18 and 19, for 

arrays consisting of small and large pontoons respectively. All 

arrays follow the trends of the analytical solution very well. The 

longer arrays are closer to the analytical solution than the shorter 

ones. DIFFRAC takes the added mass into account, while the 

analytical solution assumed this is almost negligible. This 

comparison suggests that the added mass inclusion does not 

influence the surge RAO. 

 

 
FIGURE 18: SURGE RAO SMALL PONTOONS DIFFRAC 

 
FIGURE 19: SURGE RAO LARGE PONTOONS DIFFRAC 

 

3.3 Wave frequent axial loads – stiff hinges 

Using the high axial stiffness from Section 3.2, the axial 

load RAO from DIFFRAC is plotted in Figures 20 and 21, for 

arrays consisting of small and large pontoons respectively. One 

trivial reason why the analytical solutions start to deviate from 

DIFFRAC is that the individual pontoons are not short as 

compared to the wave. Note that in the analytical solution we 

assume a constant pressure gradient over the length of an 

individual pontoon (see Equation 2). When the pontoon length 

reaches the same order of magnitude as the wave length, this is 

no longer the case. The second reason why the analytical solution 

deviates can be attributed to the influence of radiation and 

diffraction. 

 
FIGURE 20: AXIAL LOAD RAO SMALL PONTOONS, N = 6 

(TOP LEFT) TO N = 48 (BOTTOM RIGHT) 

 
FIGURE 21: AXIAL LOAD RAO LARGE PONTOONS, FROM N 

= 6 (TOP LEFT) TO N = 48 (BOTTOM RIGHT) 
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3.4 Wave frequent axial loads – soft hinges 

The influence of axial connector stiffness has been 

investigated in DIFFRAC using the 24 large array. Four different 

stiffness values have been chosen such that the analytically 

derived natural frequency of the first mode corresponds to the 

wave frequencies at L / λ = 2,3,4 and 5.  

 

Table 2: First axial mode, stiffness variation 

 ωn at Analytic Diffrac Diffrac Radiation  
C L / λ dry ωn dry ωn wet ωn Damping Ca 

[N/m] [-] [rad/s] [rad/s] [rad/s] [-] [-] 

7.02E3 2 2.96 2.95 2.89 0.0003 0.042 

1.05E4 3 3.63 3.61 3.53 0.0004 0.043 

1.41E4 4 4.19 4.17 4.08 0.0005 0.043 

1.76E4 5 4.68 4.67 4.56 0.0007 0.043 
 

As described in Table 2 for all cases the dry natural 

frequency of DIFFRAC is within 0.5% of the analytical solution. 

The added mass for the first natural mode in this case is 4% of 

the dry mass, which explains why the analytical solution is a 

good estimate. The added mass is not frequency dependent in the 

tested range. The radiation damping considered is less than 1% 

of the critical damping. It is noted that the hydrodynamic 

damping will also have a viscous component. The solution of 

those 4 cases, including a modal damping ratio of 0.1 (assumed 

to be from the connectors), is shown in Figure 22. 

 
FIGURE 22: AXIAL LOAD RAO LARGE PONTOONS, N=24, 

FROM ωN AT 2 (TOP LEFT) TO ωN AT 5 (BOTTOM RIGHT) 

The variation in the number of pontoons shown in Table 3 

and Table 4 respectively corresponding to the small and large 

pontoons. The magnitude of the added mass results from gap 

dynamics and hence the number of pontoons per gap N/(N-1) is 

an important parameter. The added mass coefficient is plotted 

against this ratio in Figure 23, which shows a clear linear relation 

between the amount pontoons per gap and the added mass. When 

the number of pontoons is large, i.e. N/(N-1) = 1, the large 

pontoons have an added mass of 3% and the small pontoons an 

added mass of 6%. These percentages are probably dependent on 

the pontoon gap to T and Lpp ratios. However, this matter is under 

further investigation. 

Table 3: First axial mode, variation in N small 
pontoons 

  Analytical Diffrac Diffrac Radiation  
N c dry ωn dry ωn wet ωn Damping Ca 

[-] [N/m] [rad/s] [rad/s] [rad/s] [-] [-] 

6 2290 10.31 9.58 8.83 0.0223 0.179 

8 3206 8.91 8.55 7.98 0.0154 0.147 

12 5038 7.27 7.17 6.79 0.0076 0.116 

24 10534 5.13 5.19 4.97 0.0017 0.087 

48 21527 3.63 3.72 3.59 0.0004 0.074 
 

Table 4: First axial mode, variation in N large 
pontoons 

  Analytical Diffrac Diffrac Radiation  
N c dry ωn dry ωn wet ωn Damping Ca 

[-] [N/m] [rad/s] [rad/s] [rad/s] [-] [-] 

6 2290 7.27 6.66 6.36 0.0070 0.096 

8 3206 6.29 5.94 5.72 0.0040 0.076 

12 5038 5.13 4.98 4.84 0.0017 0.058 

24 10534 3.63 3.61 3.53 0.0004 0.043 

48 21527 2.56 2.58 2.54 0.0001 0.036 

 
FIGURE 23: ADDED MASS COEFFICIENT FIRST AXIAL 

MODE 
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4. BASIN TESTS 
 
4.1 Test setup 

To validate the wave frequent surge response and axial 

connector load, seakeeping tests were performed in MARIN’s 

Concept basin. Four arrays were tested, namely 6 Small, 12 

Small, 6 Large and 12 Large. The test setup for ‘12 Large’ is 

shown in Figure 26. A horizontal soft mooring system was 

specifically designed for the tests, with all fairleads at the most 

waveward pontoon. In this way the mooring system does not 

induce loading in the connectors. Offshore, practically this can 

be hardly avoided. However, for the purpose of the tests the 

mooring induced connector load was deliberately excluded. The 

stiffness of the mooring lines was chosen so that the natural 

frequency of the moored system is one order of magnitude longer 

than the longest wave frequency tested. 

The arrays were instrumented with a motion tracking target 

on the most waveward pontoon (Figure 24) and a connector load 

force measurement (Figure 25). The connector load was 

measured at the central hinge, i.e. in-between pontoons 3 & 4 for 

the arrays consisting of 6 pontoons and in-between pontoons 6 

& 7 for the arrays consisting of 12 pontoons. Each array was 

tested with 6 irregular waves as listed in Table 5.  

 

 
FIGURE 24: 12 SMALL WITH MOTION TARGET 

 
FIGURE 25: CONNECTOR FORCE MEASUREMENT 

 

Table 5: Tested irregular waves 

 Hs Tp Dir. γ 

[m] [s]  [deg] [-] 

Irregular 1 0.018 0.90 180 3.0 

Irregular 2 0.036 0.90 180 3.0 

Irregular 3 0.036 1.20 180 1.9 

Irregular 4 0.072 1.20 180 1.9 

Irregular 5 0.036 1.70 180 1.1 

Irregular 6 0.072 1.70 180 1.1 
 

 
FIGURE 26: 12 LARGE MOORED IN CONCEPT BASIN 
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4.1 Post-processing 

The RAO for motions and hinge loads have been derived for 

all irregular wave tests using the spectrum method: 

 

𝑅𝐴𝑂 (𝜔) =  √
𝑆𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝜔)

𝑆𝑤𝑎𝑣𝑒(𝜔)
                                                           (42) 

As we divide the response by the spectral density of the 

incoming wave, the RAO can only be determined at those 

frequencies where Swave >> 0. Consequently, the RAO is 

determined at frequencies where Swave (ω) > 0.2 Swave (ωp). This 

20% threshold is a compromise, selecting a higher threshold will 

improve the signal to noise ratio, while a lower threshold results 

in a broader frequency range. 

The resulting RAO for the motions and axial loads is shown 

in Figures 27 and 28 respectively. If a system has a perfectly 

linear response, in a basin without any random uncertainties, the 

RAOs of all 6 irregular wave tests are in-line with each other. If 

two irregular wave tests result in a different RAO, this is due to 

a combination of non-linearities in the response and because of 

random uncertainties in the test setup. The plotted mean 

represents the average value of all irregular wave tests where the 

wave energy exceeds the threshold. 

 

 
FIGURE 27: MOTION RAO 6 & 12 SMALL 

 

 
FIGURE 28: AXIAL LOAD RAO 6 & 12 SMALL 
 

4.2 Validation 

The mean value resulting from 6 irregular wave tests was 

compared to the DIFFRAC results and the analytical solution. 

The results are shown in Figures 29 and 30 and respectively 

correspond to motions and connector loads. A repeat test was 

performed for the 12 pontoon system (Small array), where the 

load sensors were placed to a more waveward position at X/L = 

0.25 (i.e., between pontoons 3 & 4, see Figure 30). For the 

motions as well as for the axial loading, results from software 

DIFFRAC and model tests are in good agreement. The analytical 

solution is satisfactory especially for the longer arrays. The best 

agreement is seen for array ‘12 Large’. 

 

 
FIGURE 29: VALIDATION HORIZONTAL MOTION RESPONSE 

 

 

 
FIGURE 30: VALIDATION AXIAL LOAD RESPONSE 
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5. CONCLUSION 
This paper presented the wave induced responses of shallow 

draft interconnected pontoons as investigated by the EU-funded 

project BAMBOO. It is shown that the expansion of the arrays 

of shallow draft interconnected pontoons reduces the wave 

frequent horizontal motions. Notwithstanding this, the 

associated wave frequent axial connector loads do not 

necessarily amplify as they are mostly related to the stiffness and 

damping of the system. The analytical solution derived for the 

axial natural frequencies and axial loading patterns appears to be 

in good agreement with hydrodynamic diffraction theory and 

model tests in head waves. The results may be considered 

important for the development of future classification rules, 

design assessment procedures and the certification of hybrid 

wind solar farm installations. 
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